If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20y^2-8+y^2=15
We move all terms to the left:
20y^2-8+y^2-(15)=0
We add all the numbers together, and all the variables
21y^2-23=0
a = 21; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·21·(-23)
Δ = 1932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1932}=\sqrt{4*483}=\sqrt{4}*\sqrt{483}=2\sqrt{483}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{483}}{2*21}=\frac{0-2\sqrt{483}}{42} =-\frac{2\sqrt{483}}{42} =-\frac{\sqrt{483}}{21} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{483}}{2*21}=\frac{0+2\sqrt{483}}{42} =\frac{2\sqrt{483}}{42} =\frac{\sqrt{483}}{21} $
| |y-7|+10=24 | | 4(x-3)=0.5x+2 | | 8(7n+3)=-424 | | 5y-7=13+y | | 4−7n=−(8n+4)+2 | | 5+10(x+1)=9+7x | | 18=m/13 | | 4=1+7a-8a | | x/9-3=-11 | | 7k-10+3k=40 | | 7h-23=h+1 | | 3^2x=87 | | 87=-8(7x-4)+x | | 7a-6a=8 | | 2a+1=3a+3-a-1 | | 3y-7=18-2y | | 5-x*8=10 | | 0.5m+6=3-2m | | 9x+1+4x-4+3=3-68 | | 8c+15=9+2c | | 35+8x=43-(-7)x | | (1/2)m+6=3-2m | | 5-8a+4=1 | | -12.2d=15.2-10.6d | | (2x)(x)=36 | | 6+-12n=54 | | 4d+8=d-13 | | 1/2m+6=3-2m | | 15x+14+5x-2=180 | | 14-(2w+5)=-2w+9 | | 3-2(2x-6)=19 | | y=-23-4 |